An Approach to Categorification of Verma Modules

نویسنده

  • Pedro Vaz
چکیده

We give a geometric categorification of the Verma modules Mpλq for quantum sl2. CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DERIVED REPRESENTATION THEORY AND STABLE HOMOTOPY CATEGORIFICATION OF slk

We set up foundations of representation theory over S, the stable sphere, which is the “initial ring” of stable homotopy theory. In particular, we treat S-Lie algebras and their representations, characters, gln(S)-Verma modules and their duals, HarishChandra pairs and Zuckermann functors. As an application, we construct a Khovanov slk-stable homotopy type with a large prime hypothesis, which is...

متن کامل

Modules of the toroidal Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$

‎Highest weight modules of the double affine Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$ are studied under a‎ ‎new triangular decomposition‎. ‎Singular vectors of Verma modules are‎ ‎determined using a similar condition with horizontal affine Lie‎ ‎subalgebras‎, ‎and highest weight modules are described under the‎ ‎condition $c_1>0$ and $c_2=0$.

متن کامل

A GEOMETRIC CATEGORIFICATION OF TENSOR PRODUCTS OF Uq(sl2)-MODULES

We give a purely geometric categorification of tensor products of finite-dimensional simple Uq(sl2)-modules and R-matrices on them. The work is developed in the framework of category of perverse sheaves and the categorification theorems are understood as consequences of Deligne’s theory of weights.

متن کامل

An Elementary Introduction to Categorical Representation Theory

In this expository article, we will give a brief introduction to the categorical representation theory, some of which can be found in [8, 9]. The idea of categorification dates back to I. B. Frenkel. He proposed that one can construct a tensor category whose Grothendieck ring is isomorphic to the representation theory of the simplest quantum group Uq(sl2) (see, for example, [6, 7]). Since then,...

متن کامل

A diagrammatic approach to categorification of quantum groups I

To each graph without loops and multiple edges we assign a family of rings. Categories of projective modules over these rings categorify U − q (g), where g is the Kac-Moody Lie algebra associated with the graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016